Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Environmental conditions are dynamic, and plants respond to those dynamics on multiple time scales. Disequilibrium occurs when a response occurs more slowly than the driving environmental changes. We review evidence regarding disequilibrium in plant distributions, including their responses to paleoclimate changes, recent climate change and new species introductions. There is strong evidence that plant species distributions are often in some disequilibrium with their environmental conditions.This disequilibrium poses a challenge when projecting future species distributions using species distribution models (SDMs). Classically, SDMs assume that the set of species occurrences is an unbiased sample of the suitable environmental conditions. However, a species in disequilibrium with the environment may have higher‐than‐expected occurrence probabilities (e.g. due to extinction debts) or lower‐than‐expected occurrence probabilities (e.g. due to dispersal limitation) in different areas. If unaccounted for, this will lead to biased estimates of the environmental suitability.We review methods for avoiding such biases in SDMs, ranging from simple thinning of the occurrence dataset to complex dynamic and process‐based models. Such models require large data inputs, natural history knowledge and technical expertise, so implementing them can be challenging. Despite this, we advocate for their increased use, since process‐based models provide the best potential to account for biases in model training data and to then represent the dynamics of species occupancy as ranges shift.Synthesis. Occurrence records for a species are often in disequilibrium with climate. SDMs trained on such data will produce biased estimates of a species' niche unless this disequilibrium is addressed in the modelling. A range of tools, spanning a wide gradient of complexity and realism, can resolve this bias.more » « lessFree, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available June 10, 2026
- 
            Abstract BackgroundNeglected tropical diseases affect the most vulnerable populations and cause chronic and debilitating disorders. Socioeconomic vulnerability is a well-known and important determinant of neglected tropical diseases. For example, poverty and sanitation could influence parasite transmission. Nevertheless, the quantitative impact of socioeconomic conditions on disease transmission risk remains poorly explored. MethodsThis study investigated the role of socioeconomic variables in the predictive capacity of risk models of neglected tropical zoonoses using a decade of epidemiological data (2007–2018) from Brazil. Vector-borne diseases investigated in this study included dengue, malaria, Chagas disease, leishmaniasis, and Brazilian spotted fever, while directly-transmitted zoonotic diseases included schistosomiasis, leptospirosis, and hantaviruses. Environmental and socioeconomic predictors were combined with infectious disease data to build environmental and socioenvironmental sets of ecological niche models and their performances were compared. ResultsSocioeconomic variables were found to be as important as environmental variables in influencing the estimated likelihood of disease transmission across large spatial scales. The combination of socioeconomic and environmental variables improved overall model accuracy (or predictive power) by 10% on average (P < 0.01), reaching a maximum of 18% in the case of dengue fever. Gross domestic product was the most important socioeconomic variable (37% relative variable importance, all individual models exhibitedP < 0.00), showing a decreasing relationship with disease indicating poverty as a major factor for disease transmission. Loss of natural vegetation cover between 2008 and 2018 was the most important environmental variable (42% relative variable importance,P < 0.05) among environmental models, exhibiting a decreasing relationship with disease probability, showing that these diseases are especially prevalent in areas where natural ecosystem destruction is on its initial stages and lower when ecosystem destruction is on more advanced stages. ConclusionsDestruction of natural ecosystems coupled with low income explain macro-scale neglected tropical and zoonotic disease probability in Brazil. Addition of socioeconomic variables improves transmission risk forecasts on tandem with environmental variables. Our results highlight that to efficiently address neglected tropical diseases, public health strategies must target both reduction of poverty and cessation of destruction of natural forests and savannas.more » « less
- 
            Abstract Trees are pivotal to global biodiversity and nature’s contributions to people, yet accelerating global changes threaten global tree diversity, making accurate species extinction risk assessments necessary. To identify species that require expert-based re-evaluation, we assess exposure to change in six anthropogenic threats over the last two decades for 32,090 tree species. We estimated that over half (54.2%) of the assessed species have been exposed to increasing threats. Only 8.7% of these species are considered threatened by the IUCN Red List, whereas they include more than half of the Data Deficient species (57.8%). These findings suggest a substantial underestimation of threats and associated extinction risk for tree species in current assessments. We also map hotspots of tree species exposed to rapidly changing threats around the world. Our data-driven approach can strengthen the efforts going into expert-based IUCN Red List assessments by facilitating prioritization among species for re-evaluation, allowing for more efficient conservation efforts.more » « less
- 
            All species have an environmental niche, and despite technological advances, humans are unlikely to be an exception. Here, we demonstrate that for millennia, human populations have resided in the same narrow part of the climatic envelope available on the globe, characterized by a major mode around ∼11 °C to 15 °C mean annual temperature (MAT). Supporting the fundamental nature of this temperature niche, current production of crops and livestock is largely limited to the same conditions, and the same optimum has been found for agricultural and nonagricultural economic output of countries through analyses of year-to-year variation. We show that in a business-as-usual climate change scenario, the geographical position of this temperature niche is projected to shift more over the coming 50 y than it has moved since 6000 BP. Populations will not simply track the shifting climate, as adaptation in situ may address some of the challenges, and many other factors affect decisions to migrate. Nevertheless, in the absence of migration, one third of the global population is projected to experience a MAT >29 °C currently found in only 0.8% of the Earth’s land surface, mostly concentrated in the Sahara. As the potentially most affected regions are among the poorest in the world, where adaptive capacity is low, enhancing human development in those areas should be a priority alongside climate mitigation.more » « less
- 
            null (Ed.)Archaeological and paleoecological evidence shows that by 10,000 BCE, all human societies employed varying degrees of ecologically transformative land use practices, including burning, hunting, species propagation, domestication, cultivation, and others that have left long-term legacies across the terrestrial biosphere. Yet, a lingering paradigm among natural scientists, conservationists, and policymakers is that human transformation of terrestrial nature is mostly recent and inherently destructive. Here, we use the most up-to-date, spatially explicit global reconstruction of historical human populations and land use to show that this paradigm is likely wrong. Even 12,000 y ago, nearly three quarters of Earth’s land was inhabited and therefore shaped by human societies, including more than 95% of temperate and 90% of tropical woodlands. Lands now characterized as “natural,” “intact,” and “wild” generally exhibit long histories of use, as do protected areas and Indigenous lands, and current global patterns of vertebrate species richness and key biodiversity areas are more strongly associated with past patterns of land use than with present ones in regional landscapes now characterized as natural. The current biodiversity crisis can seldom be explained by the loss of uninhabited wildlands, resulting instead from the appropriation, colonization, and intensifying use of the biodiverse cultural landscapes long shaped and sustained by prior societies. Recognizing this deep cultural connection with biodiversity will therefore be essential to resolve the crisis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
